

Experiences of a microgrid research laboratory and lessons learned for future smart grids

Olimpo Anaya-Lara, Paul Crolla, Andrew J. Roscoe, Alberto Venturi and Graeme M. Burt

Santiago 2013 Symposium on Microgrids 11 & 12 September 2013

Overview

- 1. The D-NAP Facility
- 2. Power Hardware-In-The-Loop Capability
- 3. Case studies
 - Testing demand-side management algorithm
 - Evaluating power line carrier technologies
 - Dynamic modelling
 - Real-time grid emulator: wind turbine control design
- 4. Benefits of microgrid scale demonstration
- 5. Conclusions and lessons learned

The D-NAP Facility

(Distribution Network, Automation and Protection)

University of Strathclyde Engineering

- This is a 3-phase, 400V, 100kVA microgrid – can be split into 3 smaller microgrids
- 1.21 p.u. inductance is available to emulate stiff/ weak topologies
- Grid connection or islanded using M-G set
- M-G set connected to an RTDS to extend simulation capabilities of power systems

Microgrid laboratory (D-NAP)

"Parent Network" (80kVA motor-genset)

Phase-locked to the simulation OR controlled to a Pre-programmed scenario of frequency and voltage

RTS controllers

40kW, 50kVA Controllable loadbank

LPC-controlled microgrid #2

6 x 3kW singlephase inverters "Windy Boys"

2.2 & 5.5 kW Induction generator/load sets

2kVA Synchronous generator

10kW, 12.5kVA Controllable loadbank

10kVA Inverter

10kW, 12.5kVA Controllable loadbank

2 x 7.5 kW Induction generator/load sets

10kVA inverter – Built and tested at the University of Strathclyde

RT-PHIL (Power Hardware in the Loop) Techniques and Capabilities

CASE STUDIES

Fast demand response in support of the active distribution network

- with TNO Netherlands
- Observe demand response's potential to contribute to frequency control of the power system
- Test this potential against a real frequency excursion event using an integrated laboratory test environment

- PowerMatcher integrated within D-NAP laboratory to control loads as part of a real-time power hardware-inthe-loop experiment (RT-PHIL)
- Simulation based on a real event – 2008 UK frequency excursion
- Real-time market based control using the PowerMatcher

Evaluating smart grid communication in an industrial microgrid environment

University of Strathclyde Engineering

- with University of Udine
- Characterisation of power line carrier (PLC) channels within a controllable, electrically noisy, LV network
- Investigation of the possibility of using PLC in a laboratory for control
- Identification of noise sources for deployment of PLC for smart grid technologies

- with Aristotle University of Thessaloniki
- Using experimental measurements of a microgrid's (MG) characteristics to validate a dynamic black-box model
- Focusing on small-signal dynamics (challenging task when large number of ac/dc – dc/ac interfaces are involved
- Investigate the interactions between rotating and inverter interfaced DG units
- MG examined in grid-connected and islanded mode

- DERRI Transnational Access
 - DISCOSE (Testing PowerMatcher in RT-PHII environment)
 - POLSAR (Investigating PLC in a microgrid)
 - MoDERN and MoreModern (Dynamic modelling in a microgrid)
 - DERManagement (New energy management technology)
 - PV-APLC (detecting and adjusting unbalance and harmonics)
- EURAMET (state estimation modelling and validation)

SOME LESSONS LEARNED AND POSSIBLE SOLUTIONS

Low Voltage Branch Grid Impedance

- The impedances of the grid branches at low voltage level very often are not well known.
- For this reason the grid models at low voltage level are afflicted by an important uncertainty.
- Measurements in the lab and estimations, based on values available in literature, have been done in order to better evaluate these impedances.
- It is still open the problem to find an optimal way to evaluate the grid impedances on the real field.

University of Strathclyde Engineering

- Distribution networks present a large number of nodal points.
- The installation of monitoring and metering is expensive particularly at MV and LV where the installation of new VTs and CTs may be necessary.
- It is not possible to measure at every node and branch.
- It is crucial identifying a strategy to optimize the location, the number of the measurement point is important for effective network control; in order to do this, a technique based on sensitivity analysis has been developed successfully.

- A critical concern is the robustness of online and automatic active network management (ANM) algorithms/schemes.
- The ANM scheme's functionality depends on convergence to a solution when faced with uncertainty and its reliability can be reduced by data skew and errors.
- performances when subjected to different levels of data uncertainty and verify the introduction of a state estimator (SE) in the ANM architecture to mitigate the data uncertainty effects on the control action.

RT-Grid Emulator for wind turbine control design purpose (in its early stages)

Lack of facilities with capacity to test in a holistic manner full-scale grid-connected wind turbines in a controlled environment

Some have the turbine but not the grid

Some have the generator and grid (LV) – but not the turbine

Objectives

- 1. Design a Grid Emulator test rig (structure and components) that will allow to perform endurance testing and power quality validation for wind turbines based on the requirements of:
 - International Grid Codes
 - Standard (e.g. IEC, etc.)
 - Guidelines (e.g. IEEE, GL, etc.)

- 2. Turbine control performance assessment (may assist understanding and addressing scalability issues)
- 3. Portability ('bring' the grid where needed!)

RT-Grid Emulator at NAREC

Specifications:

- Rated at 10MW, 11kV both ends
- Ability to perform electrical Hardware in the loop operation

Capabilities:

- Asymmetrical/unbalanced condition
- Grid fault level condition
- Harmonic distortion conditions

Will require power electronic interfaces for power conditioning/

LVRT and GE point of connection

Benefits to using a Microgrid test bed

- > Flexible configurations in a fully instrumented network
- No customers to accidently disconnect (saves \$)
- Can run devices through scenarios rarely observed on the public grid, e.g. frequency dips.
- Devices can be installed within a controlled environment and constantly monitored
- New technologies can be evaluated for multiple stakeholders

- Microgrid test labs are capable of more than just demonstrating microgrid technologies
- Useful platforms for validation and prototyping of novel technologies
- Can be a route for smart grid technologies into private microgrids and the public grid.

